Dynamic Medial Axis Based Motion Planning in Sensor Networks
نویسندگان
چکیده
An important property in sensor networks is the monitoring of temporal changes of hazardous situations such as forest fires. Rescue groups need to be aware of dynamic changes that affect their rescue efforts. In this paper, we discuss an infrastructure for sensor networks that provides a good abstraction of geometric and topological features of a dynamically changing sensing environment. This infrastructure enables efficient path planning and navigation using localized algorithms. We propose a dynamic medial axis infrastructure that represents shapes and changes of shapes in a geometric space. We develop distributed algorithms for maintaining this infrastructure as changes occur. Dynamic medial axis allows rescue teams to find a short path to safety in a changing environment. We show that our dynamic medial axis algorithms have low message complexities and provide good approximations to the true medial axis. Contact author. Hyunyoung Lee. E-mail: [email protected]. Address: 2360 S. Gaylord St, Dept of Computer Science, University of Denver, Denver, CO 80208. Phone: +1-303-871-7732, Fax: +1-303871-3010.
منابع مشابه
Mobile Robot Online Motion Planning Using Generalized Voronoi Graphs
In this paper, a new online robot motion planner is developed for systematically exploring unknown environ¬ments by intelligent mobile robots in real-time applications. The algorithm takes advantage of sensory data to find an obstacle-free start-to-goal path. It does so by online calculation of the Generalized Voronoi Graph (GVG) of the free space, and utilizing a combination of depth-first an...
متن کاملTarget Tracking Based on Virtual Grid in Wireless Sensor Networks
One of the most important and typical application of wireless sensor networks (WSNs) is target tracking. Although target tracking, can provide benefits for large-scale WSNs and organize them into clusters but tracking a moving target in cluster-based WSNs suffers a boundary problem. The main goal of this paper was to introduce an efficient and novel mobility management protocol namely Target Tr...
متن کاملDynamic Obstacle Avoidance by Distributed Algorithm based on Reinforcement Learning (RESEARCH NOTE)
In this paper we focus on the application of reinforcement learning to obstacle avoidance in dynamic Environments in wireless sensor networks. A distributed algorithm based on reinforcement learning is developed for sensor networks to guide mobile robot through the dynamic obstacles. The sensor network models the danger of the area under coverage as obstacles, and has the property of adoption o...
متن کاملA Gravitational Search Algorithm-Based Single-Center of Mass Flocking Control for Tracking Single and Multiple Dynamic Targets for Parabolic Trajectories in Mobile Sensor Networks
Developing optimal flocking control procedure is an essential problem in mobile sensor networks (MSNs). Furthermore, finding the parameters such that the sensors can reach to the target in an appropriate time is an important issue. This paper offers an optimization approach based on metaheuristic methods for flocking control in MSNs to follow a target. We develop a non-differentiable optimizati...
متن کاملA multiple criteria algorithm for planning the itinerary of mobile sink in wireless sensor networks
The mobile sink can increase the efficiency of wireless sensor networks. It moves in a monitored environment and collects the network nodes information. Thus, by the sink we can balance the power consumption and increases the network lifetime. Determining path of the sink's movement is usually modeled as an optimization problem where finding optimal solutions require collecting value of all the...
متن کامل